Stahl: Saar-Forscher optimieren Werkstoff-Klassifizierung

9. April 2018


Etwa 5.000 Stahlsorten sind auf dem Markt. Doch wie können Hersteller bei einem spezifischen Stahl garantieren, dass er immer dieselbe hohe Qualität aufweist? Bisher werden dafür Materialproben unter dem Mikroskop analysiert und von erfahrenen Mitarbeitern mit Beispielbildern abgeglichen. Diese Werkstoff-Klassifizierung ist jedoch fehleranfällig. Mit Hilfe von maschinellen Lernverfahren haben Saarbrücker Informatiker und Materialforscher daher eine Methode entwickelt, die viel genauer und objektiver ist als herkömmliche Qualitätskontrollen. Ihre Ergebnisse wurden in den Scientific Reports des US-Fachmagazins Nature veröffentlicht. Daran beteiligt waren der Informatik-Doktorand Seyed Majid Azimi und sein Forschungsgruppenleiter Mario Fritz vom Max-Planck-Institut für Informatik sowie die Materialwissenschaftler Dominik Britz, Michael Engstler und Pro¬fessor Frank Mücklich von der Universität des Saarlandes.

 

Die Materialforscher suchten nach einem „täuschungssicheren“ objektiven Verfahren, das unabhängig von den fachlichen Vorkenntnissen des Anwenders eingesetzt werden kann. „Durch maschinelle Lernmethoden können Computer sehr schnell komplexe Muster erkennen und die Geometrie der Mikrostrukturen in Mikroskopie-Aufnahmen einander zuordnen. Sie können aber auch die Merkmale von vorher klassifizierten Mikrostrukturen lernen und diese mit den erkannten Mustern abgleichen“, erklärt Mücklich. Auf diese Weise konnten die Saarbrücker Forscher die Mikrostrukturen von kohlenstoffarmem Stahl genau bestimmen, was bisher in dieser Detailschärfe nicht möglich war.

 

(Quelle: http://idw-online.de/de/news689408)